2025-12-09 Daily Challenge
Today I have done leetcode's December LeetCoding Challenge with cpp.
December LeetCoding Challenge 9
Description
Count Special Triplets
You are given an integer array nums.
A special triplet is defined as a triplet of indices (i, j, k) such that:
0 <= i < j < k < n, wheren = nums.lengthnums[i] == nums[j] * 2nums[k] == nums[j] * 2
Return the total number of special triplets in the array.
Since the answer may be large, return it modulo 109 + 7.
Example 1:
Input: nums = [6,3,6]
Output: 1
Explanation:
The only special triplet is (i, j, k) = (0, 1, 2), where:
nums[0] = 6,nums[1] = 3,nums[2] = 6nums[0] = nums[1] * 2 = 3 * 2 = 6nums[2] = nums[1] * 2 = 3 * 2 = 6
Example 2:
Input: nums = [0,1,0,0]
Output: 1
Explanation:
The only special triplet is (i, j, k) = (0, 2, 3), where:
nums[0] = 0,nums[2] = 0,nums[3] = 0nums[0] = nums[2] * 2 = 0 * 2 = 0nums[3] = nums[2] * 2 = 0 * 2 = 0
Example 3:
Input: nums = [8,4,2,8,4]
Output: 2
Explanation:
There are exactly two special triplets:
(i, j, k) = (0, 1, 3)<ul> <li><code>nums[0] = 8</code>, <code>nums[1] = 4</code>, <code>nums[3] = 8</code></li> <li><code>nums[0] = nums[1] * 2 = 4 * 2 = 8</code></li> <li><code>nums[3] = nums[1] * 2 = 4 * 2 = 8</code></li> </ul> </li> <li><code>(i, j, k) = (1, 2, 4)</code> <ul> <li><code>nums[1] = 4</code>, <code>nums[2] = 2</code>, <code>nums[4] = 4</code></li> <li><code>nums[1] = nums[2] * 2 = 2 * 2 = 4</code></li> <li><code>nums[4] = nums[2] * 2 = 2 * 2 = 4</code></li> </ul> </li>
Constraints:
3 <= n == nums.length <= 1050 <= nums[i] <= 105
Solution
class Solution {
const int MOD = 1e9 + 7;
public:
int specialTriplets(vector<int>& nums) {
map<int, vector<int>> positions;
int len = nums.size();
for(int i = 0; i < len; ++i) {
positions[nums[i]].push_back(i);
}
int answer = 0;
for(auto &[jNum, jPos] : positions) {
if(!jNum) {
int sz = jPos.size();
answer += 1LL * sz * (sz - 1) * (sz - 2) / 6 % MOD;
continue;
}
if(!positions.count(jNum * 2) || positions[jNum * 2].size() < 2) continue;
vector<int> &ik = positions[jNum * 2];
int sz = ik.size();
int k = upper_bound(ik.begin(), ik.end(), jPos[0]) - ik.begin();
for(auto j : jPos) {
k = upper_bound(ik.begin() + k, ik.end(), j) - ik.begin();
if(k == sz) break;
answer += 1LL * (k) * (sz - k) % MOD;
answer %= MOD;
}
// cout << jNum << ' ' << answer << endl;
}
return answer;
}
};
// Accepted
// 1121/1121 cases passed (725 ms)
// Your runtime beats 64.23 % of cpp submissions
// Your memory usage beats 61.68 % of cpp submissions (368.9 MB)