2025-03-29 Daily Challenge
Today I have done leetcode's March LeetCoding Challenge with cpp
.
March LeetCoding Challenge 29
Description
Apply Operations to Maximize Score
You are given an array nums
of n
positive integers and an integer k
.
Initially, you start with a score of 1
. You have to maximize your score by applying the following operation at most k
times:
- Choose any non-empty subarray
nums[l, ..., r]
that you haven't chosen previously. - Choose an element
x
ofnums[l, ..., r]
with the highest prime score. If multiple such elements exist, choose the one with the smallest index. - Multiply your score by
x
.
Here, nums[l, ..., r]
denotes the subarray of nums
starting at index l
and ending at the index r
, both ends being inclusive.
The prime score of an integer x
is equal to the number of distinct prime factors of x
. For example, the prime score of 300
is 3
since 300 = 2 * 2 * 3 * 5 * 5
.
Return the maximum possible score after applying at most k
operations.
Since the answer may be large, return it modulo 109 + 7
.
Example 1:
Input: nums = [8,3,9,3,8], k = 2 Output: 81 Explanation: To get a score of 81, we can apply the following operations: - Choose subarray nums[2, ..., 2]. nums[2] is the only element in this subarray. Hence, we multiply the score by nums[2]. The score becomes 1 * 9 = 9. - Choose subarray nums[2, ..., 3]. Both nums[2] and nums[3] have a prime score of 1, but nums[2] has the smaller index. Hence, we multiply the score by nums[2]. The score becomes 9 * 9 = 81. It can be proven that 81 is the highest score one can obtain.
Example 2:
Input: nums = [19,12,14,6,10,18], k = 3 Output: 4788 Explanation: To get a score of 4788, we can apply the following operations: - Choose subarray nums[0, ..., 0]. nums[0] is the only element in this subarray. Hence, we multiply the score by nums[0]. The score becomes 1 * 19 = 19. - Choose subarray nums[5, ..., 5]. nums[5] is the only element in this subarray. Hence, we multiply the score by nums[5]. The score becomes 19 * 18 = 342. - Choose subarray nums[2, ..., 3]. Both nums[2] and nums[3] have a prime score of 2, but nums[2] has the smaller index. Hence, we multipy the score by nums[2]. The score becomes 342 * 14 = 4788. It can be proven that 4788 is the highest score one can obtain.
Constraints:
1 <= nums.length == n <= 105
1 <= nums[i] <= 105
1 <= k <= min(n * (n + 1) / 2, 109)
Solution
inline long long qpow(long long base, long long exp, long long mod) {
long long result = 1;
while(exp) {
if(exp & 1) {
result *= base;
result %= mod;
}
base *= base;
base %= mod;
exp >>= 1;
}
return result;
}
class Solution {
const int MOD = 1e9 + 7;
static vector<int> primeScores;
public:
int maximumScore(vector<int>& nums, int k) {
int len = nums.size();
vector<int> scores(len);
for(int i = 0; i < len; ++i) {
scores[i] = primeScores[nums[i]];
}
vector<int> left(len, -1);
vector<int> right(len, len);
vector<int> mono;
for(int i = 0; i < len; ++i) {
while(mono.size() && scores[mono.back()] < scores[i]) {
mono.pop_back();
}
if(mono.size()) left[i] = mono.back();
mono.push_back(i);
}
mono.clear();
for(int i = len - 1; i >= 0; --i) {
while(mono.size() && scores[mono.back()] <= scores[i]) {
mono.pop_back();
}
if(mono.size()) right[i] = mono.back();
mono.push_back(i);
}
vector<long long> count(len);
for(int i = 0; i < len; ++i) {
count[i] = 1LL * (i - left[i]) * (right[i] - i);
}
map<int, long long> ops;
for(int i = 0; i < len; ++i) {
ops[-nums[i]] += count[i];
}
long long answer = 1;
for(auto [num, count] : ops) {
if(k > count) {
answer *= qpow(-num, count, MOD);
answer %= MOD;
k -= count;
} else {
answer *= qpow(-num, k, MOD);
answer %= MOD;
break;
}
}
return answer;
}
};
vector<int> Solution::primeScores = []() {
vector<int> result(100001, 0);
result[1] = 0;
for(int i = 2; i < 50001; ++i) {
if(result[i]) continue;
for(int j = i * 2; j < 100001; j += i) {
result[j] += 1;
}
}
for(int i = 2; i < 100001; ++i) {
result[i] += !result[i];
}
return result;
}();
// Accepted
// 870/870 cases passed (167 ms)
// Your runtime beats 86.06 % of cpp submissions
// Your memory usage beats 59.39 % of cpp submissions (147.3 MB)