2024-10-11 Daily Challenge
Today I have done leetcode's October LeetCoding Challenge with cpp
.
October LeetCoding Challenge 11
Description
The Number of the Smallest Unoccupied Chair
There is a party where n
friends numbered from 0
to n - 1
are attending. There is an infinite number of chairs in this party that are numbered from 0
to infinity
. When a friend arrives at the party, they sit on the unoccupied chair with the smallest number.
- For example, if chairs
0
,1
, and5
are occupied when a friend comes, they will sit on chair number2
.
When a friend leaves the party, their chair becomes unoccupied at the moment they leave. If another friend arrives at that same moment, they can sit in that chair.
You are given a 0-indexed 2D integer array times
where times[i] = [arrivali, leavingi]
, indicating the arrival and leaving times of the ith
friend respectively, and an integer targetFriend
. All arrival times are distinct.
Return the chair number that the friend numbered targetFriend
will sit on.
Example 1:
Input: times = [[1,4],[2,3],[4,6]], targetFriend = 1 Output: 1 Explanation: - Friend 0 arrives at time 1 and sits on chair 0. - Friend 1 arrives at time 2 and sits on chair 1. - Friend 1 leaves at time 3 and chair 1 becomes empty. - Friend 0 leaves at time 4 and chair 0 becomes empty. - Friend 2 arrives at time 4 and sits on chair 0. Since friend 1 sat on chair 1, we return 1.
Example 2:
Input: times = [[3,10],[1,5],[2,6]], targetFriend = 0 Output: 2 Explanation: - Friend 1 arrives at time 1 and sits on chair 0. - Friend 2 arrives at time 2 and sits on chair 1. - Friend 0 arrives at time 3 and sits on chair 2. - Friend 1 leaves at time 5 and chair 0 becomes empty. - Friend 2 leaves at time 6 and chair 1 becomes empty. - Friend 0 leaves at time 10 and chair 2 becomes empty. Since friend 0 sat on chair 2, we return 2.
Constraints:
n == times.length
2 <= n <= 104
times[i].length == 2
1 <= arrivali < leavingi <= 105
0 <= targetFriend <= n - 1
- Each
arrivali
time is distinct.
Solution
class Solution {
public:
int smallestChair(vector<vector<int>>& times, int targetFriend) {
using pi = pair<int, int>;
priority_queue<pi, vector<pi>, greater<pi>> chairs;
priority_queue<int, vector<int>, greater<int>> avail;
int current = 0;
int targetStart = times[targetFriend][0];
sort(times.begin(), times.end());
for(const auto &time : times) {
int start = time[0];
int end = time[1];
while(chairs.size() && chairs.top().first <= start) {
avail.push(chairs.top().second);
chairs.pop();
}
int index;
if(avail.size()) {
index = avail.top();
avail.pop();
} else {
index = current;
current += 1;
}
chairs.push({end, index});
if(start == targetStart) return index;
}
return -1;
}
};