2024-01-06 Daily Challenge
Today I have done leetcode's January LeetCoding Challenge with cpp
.
January LeetCoding Challenge 6
Description
Maximum Profit in Job Scheduling
We have n
jobs, where every job is scheduled to be done from startTime[i]
to endTime[i]
, obtaining a profit of profit[i]
.
You're given the startTime
, endTime
and profit
arrays, return the maximum profit you can take such that there are no two jobs in the subset with overlapping time range.
If you choose a job that ends at time X
you will be able to start another job that starts at time X
.
Example 1:
Input: startTime = [1,2,3,3], endTime = [3,4,5,6], profit = [50,10,40,70] Output: 120 Explanation: The subset chosen is the first and fourth job. Time range [1-3]+[3-6] , we get profit of 120 = 50 + 70.
Example 2:
Input: startTime = [1,2,3,4,6], endTime = [3,5,10,6,9], profit = [20,20,100,70,60] Output: 150 Explanation: The subset chosen is the first, fourth and fifth job. Profit obtained 150 = 20 + 70 + 60.
Example 3:
Input: startTime = [1,1,1], endTime = [2,3,4], profit = [5,6,4] Output: 6
Constraints:
1 <= startTime.length == endTime.length == profit.length <= 5 * 104
1 <= startTime[i] < endTime[i] <= 109
1 <= profit[i] <= 104
Solution
auto speedup = [](){
cin.tie(nullptr);
cout.tie(nullptr);
ios::sync_with_stdio(false);
return 0;
}();
struct Job {
int start;
int end;
int profit;
Job() {}
Job(int start, int end, int profit): start(start), end(end), profit(profit) {}
bool operator<(const Job& other) const {
return this->start < other.start;
}
};
class Solution {
public:
int jobScheduling(vector<int>& startTime, vector<int>& endTime, vector<int>& profit) {
vector<Job> jobs;
int len = startTime.size();
for(int i = 0; i < startTime.size(); i++) {
jobs.push_back(Job(startTime[i], endTime[i], profit[i]));
}
sort(jobs.begin(), jobs.end());
vector<int> dp(len);
for(int i = 0; i < len; ++i) {
dp[i] = jobs[i].profit;
}
for(int i = 0; i < len; i++) {
if(i) {
dp[i] = max(dp[i], dp[i - 1] - jobs[i - 1].profit + jobs[i].profit);
}
int pos = lower_bound(jobs.begin() + i, jobs.end(), jobs[i].end,
[](const Job& j, int endTime) {
return j.start < endTime;
}) - jobs.begin();
if(pos < len && dp[pos] < dp[i] + jobs[pos].profit) dp[pos] = dp[i] + jobs[pos].profit;
}
return *max_element(dp.begin(), dp.end());
}
};
// Accepted
// 31/31 cases passed (86 ms)
// Your runtime beats 99.64 % of cpp submissions
// Your memory usage beats 83.65 % of cpp submissions (66 MB)