2023-08-20 Daily Challenge
Today I have done leetcode's August LeetCoding Challenge with cpp
.
August LeetCoding Challenge 20
Description
Sort Items by Groups Respecting Dependencies
There are n
items each belonging to zero or one of m
groups where group[i]
is the group that the i
-th item belongs to and it's equal to -1
if the i
-th item belongs to no group. The items and the groups are zero indexed. A group can have no item belonging to it.
Return a sorted list of the items such that:
- The items that belong to the same group are next to each other in the sorted list.
- There are some relations between these items where
beforeItems[i]
is a list containing all the items that should come before thei
-th item in the sorted array (to the left of thei
-th item).
Return any solution if there is more than one solution and return an empty list if there is no solution.
Example 1:
Input: n = 8, m = 2, group = [-1,-1,1,0,0,1,0,-1], beforeItems = [[],[6],[5],[6],[3,6],[],[],[]] Output: [6,3,4,1,5,2,0,7]
Example 2:
Input: n = 8, m = 2, group = [-1,-1,1,0,0,1,0,-1], beforeItems = [[],[6],[5],[6],[3],[],[4],[]] Output: [] Explanation: This is the same as example 1 except that 4 needs to be before 6 in the sorted list.
Constraints:
1 <= m <= n <= 3 * 104
group.length == beforeItems.length == n
-1 <= group[i] <= m - 1
0 <= beforeItems[i].length <= n - 1
0 <= beforeItems[i][j] <= n - 1
i != beforeItems[i][j]
beforeItems[i]
does not contain duplicates elements.
Solution
class Solution {
int groupDegree[30000] = {};
int degree[30000] = {};
vector<int> children[30000];
vector<int> groupChildren[30000];
vector<int> items[30000];
public:
vector<int> sortItems(int n, int m, vector<int>& group, vector<vector<int>>& beforeItems) {
// init
for(int i = 0; i < n; ++i) {
if(group[i] == -1) group[i] = m++;
items[group[i]].push_back(i);
}
for(int i = 0; i < n; ++i) {
for(auto p : beforeItems[i]) {
children[p].push_back(i);
degree[i] += 1;
if(group[p] != group[i]) {
groupDegree[group[i]] += 1;
groupChildren[group[p]].push_back(group[i]);
}
}
}
// topological sort for group
vector<int> groupOrder;
queue<int> q;
for(int i = 0; i < m; ++i) {
if(!groupDegree[i]) q.push(i);
}
while(q.size()) {
int cur = q.front();
q.pop();
groupOrder.push_back(cur);
for(auto c : groupChildren[cur]) {
groupDegree[c] -= 1;
if(!groupDegree[c]) q.push(c);
}
}
// cout << groupOrder << endl;
if(groupOrder.size() != m) return {};
// sort items
vector<int> answer;
for(auto g : groupOrder) {
int sz = answer.size();
for(auto item : items[g]) {
if(!degree[item]) q.push(item);
}
while(q.size()) {
int cur = q.front();
q.pop();
answer.push_back(cur);
for(auto c : children[cur]) {
degree[c] -= 1;
if(group[c] == group[cur] && !degree[c]) {
q.push(c);
}
}
}
if(answer.size() - sz != items[g].size()) return {};
}
return answer;
}
};
// Accepted
// 17/17 cases passed (80 ms)
// Your runtime beats 90.12 % of cpp submissions
// Your memory usage beats 88.95 % of cpp submissions (41.8 MB)