2023-03-27 Daily Challenge
Today I have done leetcode's March LeetCoding Challenge with cpp
.
March LeetCoding Challenge 27
Description
Minimum Path Sum
Given a m x n
grid
filled with non-negative numbers, find a path from top left to bottom right, which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example 1:
Input: grid = [[1,3,1],[1,5,1],[4,2,1]] Output: 7 Explanation: Because the path 1 → 3 → 1 → 1 → 1 minimizes the sum.
Example 2:
Input: grid = [[1,2,3],[4,5,6]] Output: 12
Constraints:
m == grid.length
n == grid[i].length
1 <= m, n <= 200
0 <= grid[i][j] <= 100
Solution
auto speedup = [](){
cin.tie(nullptr);
cout.tie(nullptr);
ios::sync_with_stdio(false);
return 0;
}();
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
int rows = grid.size();
int cols = grid.front().size();
int dp[2][cols];
for(int i = 0; i < cols; ++i) {
dp[0][i] = grid[0][i];
if(i) dp[0][i] += dp[0][i - 1];
}
for(int i = 1; i < rows; ++i) {
int parity = (i & 1);
dp[parity][0] = dp[!parity][0] + grid[i][0];
for(int j = 1; j < cols; ++j) {
dp[parity][j] = min(dp[!parity][j], dp[parity][j - 1]) + grid[i][j];
}
}
return dp[!(rows & 1)][cols - 1];
}
};
// Accepted
// 61/61 cases passed (3 ms)
// Your runtime beats 99.49 % of cpp submissions
// Your memory usage beats 82.48 % of cpp submissions (9.7 MB)