2023-01-29 Daily Challenge
Today I have done leetcode's January LeetCoding Challenge with cpp
.
January LeetCoding Challenge 29
Description
LFU Cache
Design and implement a data structure for a Least Frequently Used (LFU) cache.
Implement the LFUCache
class:
LFUCache(int capacity)
Initializes the object with thecapacity
of the data structure.int get(int key)
Gets the value of thekey
if thekey
exists in the cache. Otherwise, returns-1
.void put(int key, int value)
Update the value of thekey
if present, or inserts thekey
if not already present. When the cache reaches itscapacity
, it should invalidate and remove the least frequently used key before inserting a new item. For this problem, when there is a tie (i.e., two or more keys with the same frequency), the least recently usedkey
would be invalidated.
To determine the least frequently used key, a use counter is maintained for each key in the cache. The key with the smallest use counter is the least frequently used key.
When a key is first inserted into the cache, its use counter is set to 1
(due to the put
operation). The use counter for a key in the cache is incremented either a get
or put
operation is called on it.
The functions get
and put
must each run in O(1)
average time complexity.
Example 1:
Input ["LFUCache", "put", "put", "get", "put", "get", "get", "put", "get", "get", "get"] [[2], [1, 1], [2, 2], [1], [3, 3], [2], [3], [4, 4], [1], [3], [4]] Output [null, null, null, 1, null, -1, 3, null, -1, 3, 4] Explanation // cnt(x) = the use counter for key x // cache=[] will show the last used order for tiebreakers (leftmost element is most recent) LFUCache lfu = new LFUCache(2); lfu.put(1, 1); // cache=[1,_], cnt(1)=1 lfu.put(2, 2); // cache=[2,1], cnt(2)=1, cnt(1)=1 lfu.get(1); // return 1 // cache=[1,2], cnt(2)=1, cnt(1)=2 lfu.put(3, 3); // 2 is the LFU key because cnt(2)=1 is the smallest, invalidate 2. // cache=[3,1], cnt(3)=1, cnt(1)=2 lfu.get(2); // return -1 (not found) lfu.get(3); // return 3 // cache=[3,1], cnt(3)=2, cnt(1)=2 lfu.put(4, 4); // Both 1 and 3 have the same cnt, but 1 is LRU, invalidate 1. // cache=[4,3], cnt(4)=1, cnt(3)=2 lfu.get(1); // return -1 (not found) lfu.get(3); // return 3 // cache=[3,4], cnt(4)=1, cnt(3)=3 lfu.get(4); // return 4 // cache=[4,3], cnt(4)=2, cnt(3)=3
Constraints:
0 <= capacity <= 104
0 <= key <= 105
0 <= value <= 109
- At most
2 * 105
calls will be made toget
andput
.
Solution
class LFUCache {
int capacity;
int lowestFrequency = 0;
unordered_map<int, int> kv;
unordered_map<int, list<int>> freqList;
unordered_map<int, int> frequencies;
unordered_map<int, list<int>::iterator> pos;
void updateFrequency(int key) {
int frequency = frequencies[key];
freqList[frequency].erase(pos[key]);
if(freqList[lowestFrequency].empty()) {
lowestFrequency += 1;
}
frequencies[key] += 1;
freqList[frequency + 1].push_front(key);
pos[key] = freqList[frequency + 1].begin();
}
public:
LFUCache(int cap): capacity(cap) {}
int get(int key) {
if(kv.count(key)) {
updateFrequency(key);
return kv[key];
}
return -1;
}
void put(int key, int value) {
if(!capacity) return;
if(kv.count(key)) {
updateFrequency(key);
} else {
if(capacity == kv.size()) {
int removedKey = freqList[lowestFrequency].back();
// cout << "remove " << removedKey << endl;
kv.erase(removedKey);
pos.erase(removedKey);
freqList[lowestFrequency].pop_back();
}
freqList[0].push_front(key);
pos[key] = freqList[0].begin();
lowestFrequency = 0;
}
kv[key] = value;
}
};
// Accepted
// 26/26 cases passed (532 ms)
// Your runtime beats 76.81 % of cpp submissions
// Your memory usage beats 42.19 % of cpp submissions (185.8 MB)