2022-01-13 Daily-Challenge
Today I have done leetcode's January LeetCoding Challenge with cpp
.
January LeetCoding Challenge 13
Description
Minimum Number of Arrows to Burst Balloons
There are some spherical balloons taped onto a flat wall that represents the XY-plane. The balloons are represented as a 2D integer array points
where points[i] = [xstart, xend]
denotes a balloon whose horizontal diameter stretches between xstart
and xend
. You do not know the exact y-coordinates of the balloons.
Arrows can be shot up directly vertically (in the positive y-direction) from different points along the x-axis. A balloon with xstart
and xend
is burst by an arrow shot at x
if xstart <= x <= xend
. There is no limit to the number of arrows that can be shot. A shot arrow keeps traveling up infinitely, bursting any balloons in its path.
Given the array points
, return the minimum number of arrows that must be shot to burst all balloons.
Example 1:
Input: points = [[10,16],[2,8],[1,6],[7,12]] Output: 2 Explanation: The balloons can be burst by 2 arrows: - Shoot an arrow at x = 6, bursting the balloons [2,8] and [1,6]. - Shoot an arrow at x = 11, bursting the balloons [10,16] and [7,12].
Example 2:
Input: points = [[1,2],[3,4],[5,6],[7,8]] Output: 4 Explanation: One arrow needs to be shot for each balloon for a total of 4 arrows.
Example 3:
Input: points = [[1,2],[2,3],[3,4],[4,5]] Output: 2 Explanation: The balloons can be burst by 2 arrows: - Shoot an arrow at x = 2, bursting the balloons [1,2] and [2,3]. - Shoot an arrow at x = 4, bursting the balloons [3,4] and [4,5].
Constraints:
1 <= points.length <= 105
points[i].length == 2
-231 <= xstart < xend <= 231 - 1
Solution
auto speedup = [](){
cin.tie(nullptr);
cout.tie(nullptr);
ios::sync_with_stdio(false);
return 0;
}();
class Solution {
public:
int findMinArrowShots(vector<vector<int>>& points) {
sort(points.begin(), points.end());
int count = 1;
int minEnd = points.front()[1];
for(const auto &point : points) {
if(point[0] > minEnd) {
count += 1;
minEnd = point[1];
} else {
minEnd = min(point[1], minEnd);
}
}
return count;
}
};
// Accepted
// 48/48 cases passed (440 ms)
// Your runtime beats 53 % of cpp submissions
// Your memory usage beats 99.9 % of cpp submissions (89.4 MB)