2021-07-29 Daily-Challenge
Today I have done Longest Substring Of All Vowels in Order and leetcode's July LeetCoding Challenge with cpp
.
Longest Substring Of All Vowels in Order
Description
A string is considered beautiful if it satisfies the following conditions:
- Each of the 5 English vowels (
'a'
,'e'
,'i'
,'o'
,'u'
) must appear at least once in it. - The letters must be sorted in alphabetical order (i.e. all
'a'
s before'e'
s, all'e'
s before'i'
s, etc.).
For example, strings "aeiou"
and "aaaaaaeiiiioou"
are considered beautiful, but "uaeio"
, "aeoiu"
, and "aaaeeeooo"
are not beautiful.
Given a string word
consisting of English vowels, return the length of the longest beautiful substring of word
. If no such substring exists, return 0
.
A substring is a contiguous sequence of characters in a string.
Example 1:
Input: word = "aeiaaioaaaaeiiiiouuuooaauuaeiu"
Output: 13
Explanation: The longest beautiful substring in word is "aaaaeiiiiouuu" of length 13.
Example 2:
Input: word = "aeeeiiiioooauuuaeiou"
Output: 5
Explanation: The longest beautiful substring in word is "aeiou" of length 5.
Example 3:
Input: word = "a"
Output: 0
Explanation: There is no beautiful substring, so return 0.
Constraints:
1 <= word.length <= 5 * 10^5
word
consists of characters'a'
,'e'
,'i'
,'o'
, and'u'
.
Solution
auto speedup = [](){
cin.tie(nullptr);
cout.tie(nullptr);
ios::sync_with_stdio(false);
return 0;
}();
char vowels[5] = {'a', 'e', 'i', 'o', 'u'};
class Solution {
public:
int longestBeautifulSubstring(string word) {
int len = word.length();
int vPos = 0;
int answer = 0;
int cur = 0;
int pos = 0;
while(pos < len) {
if(word[pos] != vowels[vPos]) {
if(vPos) vPos = 0;
else pos += 1;
cur = 0;
} else {
while(pos < len && word[pos] == vowels[vPos]) {
pos += 1;
cur += 1;
}
vPos += 1;
if(vPos == 5) {
answer = max(answer, cur);
vPos = 0;
cur = 0;
}
}
}
return answer;
}
};
// Accepted
// 120/120 cases passed (51 ms)
// Your runtime beats 100 % of cpp submissions
// Your memory usage beats 98.36 % of cpp submissions (26.7 MB)
July LeetCoding Challenge 29
Description
01 Matrix
Given an m x n
binary matrix mat
, return the distance of the nearest 0
for each cell.
The distance between two adjacent cells is 1
.
Example 1:
Input: mat = [[0,0,0],[0,1,0],[0,0,0]]
Output: [[0,0,0],[0,1,0],[0,0,0]]
Example 2:
Input: mat = [[0,0,0],[0,1,0],[1,1,1]]
Output: [[0,0,0],[0,1,0],[1,2,1]]
Constraints:
m == mat.length
n == mat[i].length
1 <= m, n <= 104
1 <= m * n <= 104
mat[i][j]
is either0
or1
.- There is at least one
0
inmat
.
Solution
just construct it
auto speedup = [](){
cin.tie(nullptr);
cout.tie(nullptr);
ios::sync_with_stdio(false);
return 0;
}();
int moves[4][2] = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};
class Solution {
public:
vector<vector<int>> updateMatrix(vector<vector<int>>& mat) {
int rows = mat.size();
int cols = mat.front().size();
vector<vector<bool>> vis(rows, vector<bool>(cols));
queue<pair<int, int>> q;
for(int i = 0; i < rows; ++i) {
for(int j = 0; j < cols; ++j) {
if(!mat[i][j]) {
vis[i][j] = true;
q.push({i, j});
}
}
}
int cnt = 1;
while(q.size()) {
int sz = q.size();
for(int _ = 0; _ < sz; ++_) {
auto [row, col] = q.front();
q.pop();
for(int i = 0; i < 4; ++i) {
int newRow = row + moves[i][0];
int newCol = col + moves[i][1];
if(newRow < 0 || newCol < 0 || newRow >= rows || newCol >= cols) continue;
if(vis[newRow][newCol]) continue;
// cout << newRow << ' ' << newCol << ' ' << cnt << endl;
vis[newRow][newCol] = true;
mat[newRow][newCol] = cnt;
q.push({newRow, newCol});
}
}
cnt += 1;
}
return mat;
}
};
// Accepted
// 49/49 cases passed (60 ms)
// Your runtime beats 90.4 % of cpp submissions
// Your memory usage beats 31.48 % of cpp submissions (30.8 MB)
auto speedup = [](){
cin.tie(nullptr);
cout.tie(nullptr);
ios::sync_with_stdio(false);
return 0;
}();
class Solution {
public:
vector<vector<int>> updateMatrix(vector<vector<int>>& mat) {
int rows = mat.size();
int cols = mat.front().size();
for(auto &row : mat) {
for(auto &i : row) if(i) i = 10000;
}
for(int i = 0; i < rows; ++i) {
for(int j = 0; j < cols; ++j) {
if(!mat[i][j]) continue;
if(i) mat[i][j] = min(mat[i][j], mat[i - 1][j] + 1);
if(j) mat[i][j] = min(mat[i][j], mat[i][j - 1] + 1);
}
}
for(int i = rows - 1; i >= 0; --i) {
for(int j = cols - 1; j >= 0; --j) {
if(!mat[i][j]) continue;
if(i != rows - 1) mat[i][j] = min(mat[i][j], mat[i + 1][j] + 1);
if(j != cols - 1) mat[i][j] = min(mat[i][j], mat[i][j + 1] + 1);
}
}
return mat;
}
};
// Accepted
// 49/49 cases passed (56 ms)
// Your runtime beats 95.88 % of cpp submissions
// Your memory usage beats 96.98 % of cpp submissions (26.1 MB)