2021-06-08 Daily-Challenge
Today I have done Subarray Sums Divisible by K and leetcode's June LeetCoding Challenge with cpp
.
Subarray Sums Divisible by K
Description
Given an array nums
of integers, return the number of (contiguous, non-empty) subarrays that have a sum divisible by k
.
Example 1:
Input: nums = [4,5,0,-2,-3,1], k = 5
Output: 7
Explanation: There are 7 subarrays with a sum divisible by k = 5:
[4, 5, 0, -2, -3, 1], [5], [5, 0], [5, 0, -2, -3], [0], [0, -2, -3], [-2, -3]
Note:
1 <= nums.length <= 30000
-10000 <= nums[i] <= 10000
2 <= k <= 10000
Solution
class Solution {
public:
int subarraysDivByK(vector<int>& nums, int k) {
int cnt[k];
memset(cnt, 0, sizeof(cnt));
int sum = 0;
int answer = 0;
cnt[0] = 1;
for(auto i : nums) {
sum = ((sum + i) % k + k) % k;
answer += cnt[sum];
cnt[sum] += 1;
}
return answer;
}
};
June LeetCoding Challenge 8
Description
Construct Binary Tree from Preorder and Inorder Traversal
Given two integer arrays preorder
and inorder
where preorder
is the preorder traversal of a binary tree and inorder
is the inorder traversal of the same tree, construct and return the binary tree.
Example 1:
Input: preorder = [3,9,20,15,7], inorder = [9,3,15,20,7]
Output: [3,9,20,null,null,15,7]
Example 2:
Input: preorder = [-1], inorder = [-1]
Output: [-1]
Constraints:
1 <= preorder.length <= 3000
inorder.length == preorder.length
-3000 <= preorder[i], inorder[i] <= 3000
preorder
andinorder
consist of unique values.- Each value of
inorder
also appears inpreorder
. preorder
is guaranteed to be the preorder traversal of the tree.inorder
is guaranteed to be the inorder traversal of the tree.
Solution
class Solution {
TreeNode *build(
vector<int>& preorder,
int preBegin,
int preEnd,
vector<int>& inorder,
int inBegin,
int inEnd
) {
if(preBegin > preEnd) return nullptr;
int rootIdx = -1;
for(int i = inBegin; i <= inEnd; ++i) {
if(inorder[i] == preorder[preBegin]) {
rootIdx = i;
break;
}
}
int offset = rootIdx - inBegin;
TreeNode *root = new TreeNode(preorder[preBegin]);
root->left = build(preorder, preBegin + 1, preBegin + offset, inorder, inBegin, inBegin + offset - 1);
root->right = build(preorder, preBegin + offset + 1, preEnd, inorder, inBegin + offset + 1, inEnd);
return root;
}
public:
TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
int len = preorder.size();
return build(preorder, 0, len - 1, inorder, 0, len - 1);
}
};