2021-05-10 Daily-Challenge
Today I have done Construct K Palindrome Strings and leetcode's May LeetCoding Challenge with cpp
.
Construct K Palindrome Strings
Description
Given a string s
and an integer k
. You should construct k
non-empty palindrome strings using all the characters in s
.
Return True if you can use all the characters in s
to construct k
palindrome strings or False otherwise.
Example 1:
Input: s = "annabelle", k = 2
Output: true
Explanation: You can construct two palindromes using all characters in s.
Some possible constructions "anna" + "elble", "anbna" + "elle", "anellena" + "b"
Example 2:
Input: s = "leetcode", k = 3
Output: false
Explanation: It is impossible to construct 3 palindromes using all the characters of s.
Example 3:
Input: s = "true", k = 4
Output: true
Explanation: The only possible solution is to put each character in a separate string.
Example 4:
Input: s = "yzyzyzyzyzyzyzy", k = 2
Output: true
Explanation: Simply you can put all z's in one string and all y's in the other string. Both strings will be palindrome.
Example 5:
Input: s = "cr", k = 7
Output: false
Explanation: We don't have enough characters in s to construct 7 palindromes.
Constraints:
1 <= s.length <= 10^5
- All characters in
s
are lower-case English letters. 1 <= k <= 10^5
Solution
class Solution {
public:
bool canConstruct(string s, int k) {
int cnt[26] = {};
for(auto c : s) cnt[c - 'a'] += 1;
int mmin = 0;
for(int i = 0; i < 26; ++i) mmin += cnt[i] & 1;
mmin = max(mmin, 1);
return k >= mmin && k <= s.length();
}
};
May LeetCoding Challenge 10
Description
Count Primes
Count the number of prime numbers less than a non-negative number, n
.
Example 1:
Input: n = 10
Output: 4
Explanation: There are 4 prime numbers less than 10, they are 2, 3, 5, 7.
Example 2:
Input: n = 0
Output: 0
Example 3:
Input: n = 1
Output: 0
Constraints:
0 <= n <= 5 * 10^6
Solution
class Solution {
public:
int countPrimes(int n) {
bool isPrime[n + 2];
memset(isPrime, 1, sizeof(isPrime));
isPrime[0] = isPrime[1] = false;
for(int i = 2; i * i <= n; ++i) {
if(!isPrime[i]) continue;
for(int j = i * i; j <= n; j += i) {
isPrime[j] = false;
}
}
return accumulate(isPrime, isPrime + n, 0);
}
};