2021-04-19 Daily-Challenge
Today I have done Combination Sum, Combination Sum II, Combination Sum III, Longest Happy String and leetcode's April LeetCoding Challenge with cpp
.
Longest Happy String
Description
A string is called happy if it does not have any of the strings 'aaa'
, 'bbb'
or 'ccc'
as a substring.
Given three integers a
, b
and c
, return any string s
, which satisfies following conditions:
s
is happy and longest possible.s
contains at mosta
occurrences of the letter'a'
, at mostb
occurrences of the letter'b'
and at mostc
occurrences of the letter'c'
.s
will only contain'a'
,'b'
and'c'
letters.
If there is no such string s
return the empty string ""
.
Example 1:
Input: a = 1, b = 1, c = 7
Output: "ccaccbcc"
Explanation: "ccbccacc" would also be a correct answer.
Example 2:
Input: a = 2, b = 2, c = 1
Output: "aabbc"
Example 3:
Input: a = 7, b = 1, c = 0
Output: "aabaa"
Explanation: It's the only correct answer in this case.
Constraints:
0 <= a, b, c <= 100
a + b + c > 0
class Solution {
void pushRest(vector<pair<int, char>> &container, string &result) {
if(container[1].first) {
result.push_back(container[1].second);
container[1].first -= 1;
} else {
result.push_back(container[2].second);
container[2].first -= 1;
}
}
string enoughMost(vector<pair<int, char>> &container, int max, int rest) {
string result;
while(max && rest) {
if(max > rest) {
result.push_back(container[0].second);
result.push_back(container[0].second);
pushRest(container, result);
max -= 2;
rest -= 1;
} else {
result.push_back(container[0].second);
pushRest(container, result);
max -= 1;
rest -= 1;
}
}
for(int i = 0; i < min(max, 2); ++i) {
result.push_back(container[0].second);
}
return result;
}
string enoughRest(vector<pair<int, char>> &container, int max, int rest) {
string result;
while(max && rest) {
if(rest > max) {
pushRest(container, result);
pushRest(container, result);
result.push_back(container[0].second);
rest -= 2;
max -= 1;
} else {
pushRest(container, result);
result.push_back(container[0].second);
max -= 1;
rest -= 1;
}
}
return result;
}
public:
string longestDiverseString(int a, int b, int c) {
vector<pair<int, char>> container{{a, 'a'}, {b, 'b'}, {c, 'c'}};
sort(container.begin(), container.end(), greater<pair<int, char>>());
int sum = a + b + c;
int max = container[0].first;
int rest = sum - max;
if(max >= rest) {
return enoughMost(container, max, rest);
}
return enoughRest(container, max, rest);
}
};
// max > 2 * rest + 2
// mmrmmrmmrmmrmmrmm...
// 2 * rest + 2 >= max >= rest
// mmrmmrmmrmrmrmrm...
// rest > max > second > third
// rrmrrmrrmrmrmrmr...
Combination Sum
Description
Given an array of distinct integers candidates
and a target integer target
, return a list of all unique combinations of candidates
where the chosen numbers sum to target
. You may return the combinations in any order.
The same number may be chosen from candidates
an unlimited number of times. Two combinations are unique if the frequency of at least one of the chosen numbers is different.
It is guaranteed that the number of unique combinations that sum up to target
is less than 150
combinations for the given input.
Example 1:
Input: candidates = [2,3,6,7], target = 7
Output: [[2,2,3],[7]]
Explanation:
2 and 3 are candidates, and 2 + 2 + 3 = 7. Note that 2 can be used multiple times.
7 is a candidate, and 7 = 7.
These are the only two combinations.
Example 2:
Input: candidates = [2,3,5], target = 8
Output: [[2,2,2,2],[2,3,3],[3,5]]
Example 3:
Input: candidates = [2], target = 1
Output: []
Example 4:
Input: candidates = [1], target = 1
Output: [[1]]
Example 5:
Input: candidates = [1], target = 2
Output: [[1,1]]
Constraints:
1 <= candidates.length <= 30
1 <= candidates[i] <= 200
- All elements of
candidates
are distinct. 1 <= target <= 500
Solution
class Solution {
void solve(
vector<vector<int>> &answer,
vector<int> &tmp,
vector<int> &candidates,
int index,
int rest
) {
if(!rest) {
answer.push_back(tmp);
return;
}
if(index == candidates.size()) return;
int curSize = tmp.size();
while(rest >= 0) {
solve(answer, tmp, candidates, index + 1, rest);
rest -= candidates[index];
tmp.push_back(candidates[index]);
}
while(curSize < tmp.size()) tmp.pop_back();
}
public:
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
vector<vector<int>> answer;
vector<int> tmp;
solve(answer, tmp, candidates, 0, target);
return answer;
}
};
Combination Sum II
Description
Given a collection of candidate numbers (candidates
) and a target number (target
), find all unique combinations in candidates
where the candidate numbers sum to target
.
Each number in candidates
may only be used once in the combination.
Note: The solution set must not contain duplicate combinations.
Example 1:
Input: candidates = [10,1,2,7,6,1,5], target = 8
Output:
[
[1,1,6],
[1,2,5],
[1,7],
[2,6]
]
Example 2:
Input: candidates = [2,5,2,1,2], target = 5
Output:
[
[1,2,2],
[5]
]
Constraints:
1 <= candidates.length <= 100
1 <= candidates[i] <= 50
1 <= target <= 30
Solution
class Solution {
void solve(
set<vector<int>> &answer,
vector<int> &tmp,
vector<int> &candidates,
int index,
int rest
) {
if(!rest) {
answer.insert(tmp);
return;
}
if(index == candidates.size() || candidates[index] > rest) return;
solve(answer, tmp, candidates, index + 1, rest);
rest -= candidates[index];
tmp.push_back(candidates[index]);
solve(answer, tmp, candidates, index + 1, rest);
tmp.pop_back();
}
public:
vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
set<vector<int>> answer;
sort(candidates.begin(), candidates.end());
vector<int> tmp;
solve(answer, tmp, candidates, 0, target);
return vector<vector<int>>(answer.begin(), answer.end());
}
};
Combination Sum III
Description
Find all valid combinations of k
numbers that sum up to n
such that the following conditions are true:
- Only numbers
1
through9
are used. - Each number is used at most once.
Return a list of all possible valid combinations. The list must not contain the same combination twice, and the combinations may be returned in any order.
Example 1:
Input: k = 3, n = 7
Output: [[1,2,4]]
Explanation:
1 + 2 + 4 = 7
There are no other valid combinations.
Example 2:
Input: k = 3, n = 9
Output: [[1,2,6],[1,3,5],[2,3,4]]
Explanation:
1 + 2 + 6 = 9
1 + 3 + 5 = 9
2 + 3 + 4 = 9
There are no other valid combinations.
Example 3:
Input: k = 4, n = 1
Output: []
Explanation: There are no valid combinations. [1,2,1] is not valid because 1 is used twice.
Example 4:
Input: k = 3, n = 2
Output: []
Explanation: There are no valid combinations.
Example 5:
Input: k = 9, n = 45
Output: [[1,2,3,4,5,6,7,8,9]]
Explanation:
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45
There are no other valid combinations.
Constraints:
2 <= k <= 9
1 <= n <= 60
Solution
class Solution {
void solve(
vector<vector<int>> &answer,
vector<int> &tmp,
int index,
int rest,
int k
) {
if(rest == 0 && tmp.size() == k) {
answer.push_back(tmp);
return;
}
if(tmp.size() >= k || index > 9 || index > rest) return;
solve(answer, tmp, index + 1, rest, k);
rest -= index;
tmp.push_back(index);
solve(answer, tmp, index + 1, rest, k);
tmp.pop_back();
}
public:
vector<vector<int>> combinationSum3(int k, int n) {
vector<vector<int>> answer;
vector<int> tmp;
solve(answer, tmp, 1, n, k);
return vector<vector<int>>(answer.begin(), answer.end());
}
};
April LeetCoding challenge 19
Description
Combination Sum IV
Given an array of distinct integers nums
and a target integer target
, return the number of possible combinations that add up to target
.
The answer is guaranteed to fit in a 32-bit integer.
Example 1:
Input: nums = [1,2,3], target = 4
Output: 7
Explanation:
The possible combination ways are:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1)
Note that different sequences are counted as different combinations.
Example 2:
Input: nums = [9], target = 3
Output: 0
Constraints:
1 <= nums.length <= 200
1 <= nums[i] <= 1000
- All the elements of
nums
are unique. 1 <= target <= 1000
Follow up: What if negative numbers are allowed in the given array? How does it change the problem? What limitation we need to add to the question to allow negative numbers?
Solution
class Solution {
public:
int combinationSum4(vector<int>& nums, int target) {
vector<int> dp(target + 1);
dp[0] = 1;
for(int i = 1; i <= target; ++i) {
for(auto num : nums) {
if(num <= i && INT_MAX - dp[i] > dp[i - num]) dp[i] += dp[i - num];
}
}
return dp[target];
}
};