2021-04-04 Daily-Challenge
Today is Sunday, I gonna review the tasks I've done this week, and finish today's leetcode's April LeetCoding Challenge with cpp
.
LeetCode Review
Longest Valid Parentheses
template<typename T>
class reversion_wrapper {
private:
T& iterable;
public:
explicit reversion_wrapper(T& iterable): iterable{iterable} {}
auto begin() const { return std::rbegin(iterable); }
auto end() const { return std::rend(iterable); }
};
class Solution {
public:
int longestValidParentheses(string s) {
int left = 0;
int right = 0;
int answer = 0;
for(auto c : s) {
if(c == '(') {
left += 1;
} else {
right += 1;
if(left == right) {
answer = max(answer, left << 1);
} else if (left < right) {
left = 0;
right = 0;
}
}
}
left = 0;
right = 0;
for(auto c : reversion_wrapper(s)) {
if(c == ')') {
right += 1;
} else {
left += 1;
if(left == right) {
answer = max(answer, left << 1);
} else if(left > right) {
left = 0;
right = 0;
}
}
}
return answer;
}
};
April LeetCoding Challenge 4
Description
Design Circular Queue
Design your implementation of the circular queue. The circular queue is a linear data structure in which the operations are performed based on FIFO (First In First Out) principle and the last position is connected back to the first position to make a circle. It is also called "Ring Buffer".
One of the benefits of the circular queue is that we can make use of the spaces in front of the queue. In a normal queue, once the queue becomes full, we cannot insert the next element even if there is a space in front of the queue. But using the circular queue, we can use the space to store new values.
Implementation the MyCircularQueue
class:
MyCircularQueue(k)
Initializes the object with the size of the queue to bek
.int Front()
Gets the front item from the queue. If the queue is empty, return-1
.int Rear()
Gets the last item from the queue. If the queue is empty, return-1
.boolean enQueue(int value)
Inserts an element into the circular queue. Returntrue
if the operation is successful.boolean deQueue()
Deletes an element from the circular queue. Returntrue
if the operation is successful.boolean isEmpty()
Checks whether the circular queue is empty or not.boolean isFull()
Checks whether the circular queue is full or not.
Example 1:
Input
["MyCircularQueue", "enQueue", "enQueue", "enQueue", "enQueue", "Rear", "isFull", "deQueue", "enQueue", "Rear"]
[[3], [1], [2], [3], [4], [], [], [], [4], []]
Output
[null, true, true, true, false, 3, true, true, true, 4]
Explanation
MyCircularQueue myCircularQueue = new MyCircularQueue(3);
myCircularQueue.enQueue(1); // return True
myCircularQueue.enQueue(2); // return True
myCircularQueue.enQueue(3); // return True
myCircularQueue.enQueue(4); // return False
myCircularQueue.Rear(); // return 3
myCircularQueue.isFull(); // return True
myCircularQueue.deQueue(); // return True
myCircularQueue.enQueue(4); // return True
myCircularQueue.Rear(); // return 4
Constraints:
1 <= k <= 1000
0 <= value <= 1000
- At most
3000
calls will be made toenQueue
,deQueue
,Front
,Rear
,isEmpty
, andisFull
.
Follow up: Could you solve the problem without using the built-in queue?
Solution
class MyCircularQueue {
int *buffer;
int begin;
int capacity;
int size;
public:
MyCircularQueue(int k): capacity(k), size(0), begin(0) {
buffer = new int[capacity];
}
~MyCircularQueue() {
delete[] buffer;
}
bool enQueue(int value) {
if(isFull()) return false;
buffer[(begin + size) % capacity] = value;
size += 1;
return true;
}
bool deQueue() {
if(!size) return false;
begin += 1;
begin %= capacity;
size -= 1;
return true;
}
int Front() {
if(!size) return -1;
return buffer[begin];
}
int Rear() {
if(!size) return -1;
return buffer[(begin + size - 1) % capacity];
}
bool isEmpty() {
return !size;
}
bool isFull() {
return size == capacity;
}
};