2021-02-13 Daily-Challenge
Today I have done Find K Pairs with Smallest Sums and leetcode's February LeetCoding Challenge with cpp
.
Ops, today is Saturday, I need to review the challenge.
LeetCode Review
Merge In Between Linked Lists
too easy to review
Random Point in Non-overlapping Rectangles
too easy to review
Rotate Image
already done a good work
Find and Replace Pattern
already done a good work
Peeking Iterator
with cache
class PeekingIterator : public Iterator {
int num;
bool has;
public:
PeekingIterator(const vector<int>& nums) : Iterator(nums) {
has = Iterator::hasNext();
if(has) num = Iterator::next();
}
// Returns the next element in the iteration without advancing the iterator.
int peek() {
return num;
}
// hasNext() and next() should behave the same as in the Iterator interface.
// Override them if needed.
int next() {
int cur = num;
has = Iterator::hasNext();
if(has) num = Iterator::next();
return cur;
}
bool hasNext() const {
return has;
}
};
Convert BST to Greater Tree
already done a good work
Copy List with Random Pointer
already reviewed several times
Valid Anagram
if I need to count unicode, I'd use unordered_map$$
class Solution {
public:
bool isAnagram(string s, string t) {
vector<int> sc(26);
vector<int> tc(26);
for(auto c : s) sc[c - 'a'] += 1;
for(auto c : t) tc[c - 'a'] += 1;
return sc == tc;
}
};
Number of Steps to Reduce a Number to Zero
class Solution {
public:
int numberOfSteps (int num) {
int answer = 0;
while(num) {
if(num & 1) num -= 1;
else num >>= 1;
answer += 1;
}
return answer;
}
};
Find K Pairs with Smallest Sums
Description
You are given two integer arrays nums1 and nums2 sorted in ascending order and an integer k.
Define a pair (u,v) which consists of one element from the first array and one element from the second array.
Find the k pairs (u1,v1),(u2,v2) ...(uk,vk) with the smallest sums.
Example 1:
Input: nums1 = [1,7,11], nums2 = [2,4,6], k = 3
Output: [[1,2],[1,4],[1,6]]
Explanation: The first 3 pairs are returned from the sequence:
[1,2],[1,4],[1,6],[7,2],[7,4],[11,2],[7,6],[11,4],[11,6]
Example 2:
Input: nums1 = [1,1,2], nums2 = [1,2,3], k = 2
Output: [1,1],[1,1]
Explanation: The first 2 pairs are returned from the sequence:
[1,1],[1,1],[1,2],[2,1],[1,2],[2,2],[1,3],[1,3],[2,3]
Example 3:
Input: nums1 = [1,2], nums2 = [3], k = 3
Output: [1,3],[2,3]
Explanation: All possible pairs are returned from the sequence: [1,3],[2,3]
Solution
brute force solution
class Solution {
public:
vector<vector<int>> kSmallestPairs(vector<int>& nums1, vector<int>& nums2, int k) {
vector<vector<int>> answer;
for(auto i : nums1) {
for(auto j : nums2) answer.push_back(vector<int>{i, j});
}
sort(answer.begin(), answer.end(), [](vector<int> &a, vector<int> &b) {
return a[0] + a[1] < b[1] + b[0];
});
int sz = answer.size();
answer.resize(min(k, sz));
return move(answer);
}
};
February LeetCoding Challenge 13
Description
Shortest Path in Binary Matrix
In an N by N square grid, each cell is either empty (0) or blocked (1).
A clear path from top-left to bottom-right has length k
if and only if it is composed of cells C_1, C_2, ..., C_k
such that:
- Adjacent cells
C_i
andC_{i+1}
are connected 8-directionally (ie., they are different and share an edge or corner) C_1
is at location(0, 0)
(ie. has valuegrid[0][0]
)C_k
is at location(N-1, N-1)
(ie. has valuegrid[N-1][N-1]
)- If
C_i
is located at(r, c)
, thengrid[r][c]
is empty (ie.grid[r][c] == 0
).
Return the length of the shortest such clear path from top-left to bottom-right. If such a path does not exist, return -1.
Example 1:
Input: [[0,1],[1,0]]
Output: 2
Example 2:
Input: [[0,0,0],[1,1,0],[1,1,0]]
Output: 4
Note:
1 <= grid.length == grid[0].length <= 100
grid[r][c]
is0
or1
Solution
class Solution {
int move[8][2] = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}, {1, 1}, {1, -1}, {-1, 1}, {-1, -1}};
public:
int shortestPathBinaryMatrix(vector<vector<int>>& grid) {
if(grid.front().front() || grid.back().back()) return -1;
int n = grid.size();
vector<vector<int>> dis(n, vector<int>(n));
dis[0][0] = 1;
queue<pair<int, int>> q;
q.push(make_pair(0, 0));
while(!q.empty()) {
auto [row, col] = q.front();
q.pop();
for(int i = 0; i < 8; ++i) {
int newRow = row + move[i][0];
int newCol = col + move[i][1];
if(newRow < 0 || newRow >= n || newCol < 0 || newCol >= n || grid[newRow][newCol]) continue;
if(dis[newRow][newCol]) continue;
dis[newRow][newCol] = dis[row][col] + 1;
q.push(make_pair(newRow, newCol));
}
}
return dis.back().back() ? dis.back().back() : -1;
}
};