2021-01-30 Daily-Challenge
Today is Saturday, I gonna review the tasks I've done this week, and finish today's leetcode's January LeetCoding Challenge with cpp
.
LeetCode Review
Check If All 1's Are at Least Length K Places Away
too easy to review
Path With Minimum Effort
too easy to review
Concatenation of Consecutive Binary Numbers
using math relations in binary representation, check explanation by DBabichev for more
class Solution {
const long long MOD = 1e9+7;
long long pow(long long base, long long exp) {
long long res = 1;
while(exp) {
if(exp & 1) res = (res * base) % MOD;
base = (base * base) % MOD;
exp >>= 1;
}
return res;
}
vector<int> getB(int n, int len) {
vector<int> result;
for(int i = 0; i < len; ++i) result.push_back(1 << i);
int rest = n - (1 << len) + 1;
for(int i = len; i >= 0; --i) {
if((rest & (1 << i))) result.push_back(1 << i);
}
return move(result);
}
public:
int concatenatedBinary(int n) {
if(n == 1) return 1;
int blen = log2(n) + 1;
vector<int> B = getB(n, blen-1);
int len = B.size();
vector<int> A(len);
vector<int> C(len);
vector<int> D(len);
for(int i = 1; i < blen; ++i) C[i-1] = i;
for(int i = blen-1; i < len; ++i) C[i] = blen;
for(int i = 1; i < len; ++i) D[len-i-1] = D[len-i] + C[len-i]*B[len-i];
A[0] = B[0];
for(int i = 1; i < len; ++i) A[i] = B[i] + A[i-1];
long long answer = 0;
for(int i = 0; i < len; ++i) {
long long t1 = pow(2LL, B[i]*C[i]) - 1;
long long t2 = pow(pow(2LL, C[i])-1, MOD-2);
long long t3 = ((A[i]-B[i]+1+t2)*t1-B[i]) % MOD;
answer += t2 * t3 % MOD * pow(2LL, D[i]);
answer %= MOD;
}
return answer;
}
};
Smallest String With A Given Numeric Value
too easy to review
Vertical Order Traversal of a Binary Tree
too easy to review
Circular Array Loop
slow/fast pointer
class Solution {
public:
bool circularArrayLoop(vector<int>& nums) {
int len = nums.size();
for(int i = 0; i < len; ++i) if(nums[i] % len == 0) nums[i] = 0;
for(int i = 0; i < len; ++i) {
if(!nums[i]) continue;
bool positive = nums[i] > 0;
int slow = i, fast = i;
bool back = false;
do {
if(!nums[fast] || ((nums[fast] > 0) != positive)) {
back = true;
break;
}
fast += nums[fast];
fast = ((fast % len) + len) % len;
if(!nums[fast] || ((nums[fast] > 0) != positive)) {
back = true;
break;
}
fast += nums[fast];
fast = ((fast % len) + len) % len;
slow += nums[slow];
slow = ((slow % len) + len) % len;
} while(slow != fast);
// cout << i << ' ' << slow << ' ' << fast << endl;
if(!back) return true;
int cur = i, nxt;
while(nums[cur] && (nums[cur] > 0) == positive) {
nxt = cur + nums[cur];
nxt = ((nxt % len) + len) % len;
nums[cur] = 0;
cur = nxt;
}
}
return false;
}
};
Letter Tile Possibilities
class Solution {
int permutation[8] = {1, 1, 2, 6, 24, 120, 720, 5040};
int answer = 0;
map<char, int> mp;
int result(vector<int> &chars, int len) {
int res = permutation[len];
for(auto cnt : chars) res /= permutation[cnt];
return res;
}
void helper(map<char, int>::iterator &it, vector<int> chars, int len, int count) {
if(it == mp.end()) {
if(count == len) answer += result(chars, len);
return;
}
for(int i = 0; i <= it->second; ++i) {
chars.push_back(i);
++it;
helper(it, chars, len, count + i);
--it;
chars.pop_back();
}
}
public:
int numTilePossibilities(string tiles) {
for(auto c : tiles) mp[c] += 1;
vector<int> tmp;
auto tmpIt = mp.begin();
for(int i = 1; i <= tiles.length(); ++i) {
helper(tmpIt, tmp, i, 0);
}
return answer;
}
};
Convert Sorted List to Binary Search Tree
inorder traversal simulation
class Solution {
ListNode *cur;
int length(ListNode *head) {
int len = 0;
while(head) {
len += 1;
head = head->next;
}
return len;
}
TreeNode *buildBST(int begin, int end) {
if(begin > end) return nullptr;
int mid = (begin + end) >> 1;
TreeNode *left = buildBST(begin, mid - 1);
TreeNode *root = new TreeNode(cur->val);
root->left = left;
cur = cur->next;
root->right = buildBST(mid + 1, end);
return root;
}
public:
TreeNode* sortedListToBST(ListNode* head) {
int len = length(head);
cur = head;
return buildBST(0, len-1);
}
};
Sum of Distances in Tree
class Solution {
vector<int> dp, children, answer;
vector<vector<int>> neighbors;
void init(int N, vector<vector<int>>& edges) {
dp.resize(N);
children.resize(N, 1);
answer.resize(N);
neighbors.resize(N);
for(auto &edge : edges) {
neighbors[edge[0]].push_back(edge[1]);
neighbors[edge[1]].push_back(edge[0]);
}
}
void initDP(int current, int parent) {
for(auto neighbor : neighbors[current]) {
if(neighbor == parent) continue;
initDP(neighbor, current);
children[current] += children[neighbor];
dp[current] += children[neighbor] + dp[neighbor];
}
}
void swapRootDP(int current, int parent) {
answer[current] = dp[current];
for(auto neighbor : neighbors[current]) {
if(neighbor == parent) continue;
dp[current] -= children[neighbor] + dp[neighbor];
children[current] -= children[neighbor];
dp[neighbor] += dp[current] + children[current];
children[neighbor] += children[current];
swapRootDP(neighbor, current);
dp[neighbor] -= dp[current] + children[current];
children[neighbor] -= children[current];
dp[current] += children[neighbor] + dp[neighbor];
children[current] += children[neighbor];
}
}
public:
vector<int> sumOfDistancesInTree(int N, vector<vector<int>>& edges) {
init(N, edges);
initDP(0, -1);
swapRootDP(0, -1);
return move(answer);
}
};
Rank Teams by Votes
too easy to review
Integer to Roman
too easy to review
Water and Jug Problem
too easy to review
Jump Game V
once found it was a topological sort problem, it's easy.
Find Longest Awesome Substring
class Solution {
public:
int longestAwesome(string s) {
int len = s.length();
vector<int> dp(1024, len+1);
dp[0] = -1;
int answer = 1;
int current = 0;
for(int i = 0; i < len; ++i) {
current ^= 1 << (s[i] - '0');
if(i < dp[current]) dp[current] = i;
else answer = max(answer, i-dp[current]);
for(int j = 0; j < 10; ++j) {
answer = max(answer, i-dp[current^(1<<j)]);
}
}
return answer;
}
};
Max Sum of Rectangle No Larger Than K
class Solution {
vector<vector<int>> prefix;
int rows;
int cols;
void init(vector<vector<int>>& matrix) {
rows = matrix.size();
cols = matrix.front().size();
prefix.resize(rows+1, vector<int>(cols+1));
for(int i = 0; i < rows; ++i) {
for(int j = 0; j < cols; ++j) {
prefix[i+1][j+1] = matrix[i][j] + prefix[i][j+1] + prefix[i+1][j] - prefix[i][j];
}
}
}
int sum(int left, int right, int up, int down) {
return prefix[down][right] - prefix[down][left] - prefix[up][right] + prefix[up][left];
}
public:
int maxSumSubmatrix(vector<vector<int>>& matrix, int target) {
init(matrix);
int answer = INT_MIN;
for(int i = 0; i < cols; ++i) {
for(int j = i+1; j <= cols; ++j) {
vector<int> arr{0};
for(int k = 1; k <= rows; ++k) {
int s = sum(i, j, 0, k);
auto it = lower_bound(arr.begin(), arr.end(), s - target);
if(it != arr.end()) {
answer = max(answer, s - *it);
};
arr.insert(lower_bound(arr.begin(), arr.end(), s), s);
}
}
}
return answer;
}
};
Implement Magic Dictionary
too easy to review
Possible Bipartition
class Solution {
vector<vector<int>> dislike;
public:
bool possibleBipartition(int N, vector<vector<int>>& dislikePairs) {
dislike.resize(N+1);
for(auto &pair : dislikePairs) {
dislike[pair[0]].push_back(pair[1]);
dislike[pair[1]].push_back(pair[0]);
}
vector<int> group(N+1, -1);
while(true) {
queue<int> q;
for(int i = 1; i <= N; ++i) {
if(group[i] == -1) {
q.push(i);
group[i] = 0;
break;
}
}
if(q.empty()) break;
while(!q.empty()) {
int current = q.front();
q.pop();
for(auto dis : dislike[current]) {
if(group[dis] != -1 && group[dis] == group[current]) return false;
if(group[dis] == -1) q.push(dis);
group[dis] = group[current] ^ 1;
}
}
}
return true;
}
};
Largest Component Size by Common Factor
class Solution {
unordered_map<int, int> parent, count;
int find(int x) {
if(!parent.count(x)) parent[x] = x;
else if(parent[x] != x) parent[x] = find(parent[x]);
return parent[x];
}
void merge(int x, int y) {
x = find(x);
y = find(y);
parent[x] = y;
}
public:
int largestComponentSize(vector<int>& A) {
for(auto num : A) {
for(int i = 2; i*i <= num; ++i) {
if(num % i == 0) {
merge(num, i);
merge(num, num / i);
}
}
}
int answer = 0;
for(auto i : A) answer = max(answer, ++count[find(i)]);
return answer;
}
};
January LeetCoding Challenge 30
Description
Minimize Deviation in Array
You are given an array nums
of n
positive integers.
You can perform two types of operations on any element of the array any number of times:
- If the element is even, divide it by
2
.- For example, if the array is
[1,2,3,4]
, then you can do this operation on the last element, and the array will be[1,2,3,2].
- For example, if the array is
- If the element is odd, multiply it by
2
.- For example, if the array is
[1,2,3,4]
, then you can do this operation on the first element, and the array will be[2,2,3,4].
- For example, if the array is
The deviation of the array is the maximum difference between any two elements in the array.
Return the minimum deviation the array can have after performing some number of operations.
Example 1:
Input: nums = [1,2,3,4]
Output: 1
Explanation: You can transform the array to [1,2,3,2], then to [2,2,3,2], then the deviation will be 3 - 2 = 1.
Example 2:
Input: nums = [4,1,5,20,3]
Output: 3
Explanation: You can transform the array after two operations to [4,2,5,5,3], then the deviation will be 5 - 2 = 3.
Example 3:
Input: nums = [2,10,8]
Output: 3
Constraints:
n == nums.length
2 <= n <= 105
1 <= nums[i] <= 109
Solution
solution is fucking amazing!
class Solution {
public:
int minimumDeviation(vector<int>& nums) {
set<int> s;
for(auto i : nums) s.insert((i&1) ? (i<<1) : i);
int answer = *s.rbegin() - *s.begin();
while((*s.rbegin() & 1) == 0) {
s.insert(*s.rbegin() >> 1);
s.erase(*s.rbegin());
answer = min(answer, *s.rbegin() - *s.begin());
}
return answer;
}
};