2021-01-10 Daily-Challenge

Today is Sunday, I gonna review the tasks I've done this week, and finish today's leetcode's January LeetCoding Challenge with cpp.

LeetCode Review

Word Ladder

bidirectional BFS

class Solution {
    unordered_set<string> dictionary;
    int len;
    int BBFS(
        unordered_set<string> &sourceSet,
        unordered_set<string> &targetSet,
        int length
    ) {
        unordered_set<string> newSourceSet;
        
        for(auto &s : sourceSet) dictionary.erase(s);
        
        for(auto &s : sourceSet) {
            for(int i = 0; i < len ; ++i) {
                string newWord = s;
                for(char c = 'a'; c <= 'z'; ++c) {
                    newWord[i] = c;
                    if(targetSet.count(newWord)) return length+1;
                    if(dictionary.count(newWord)) newSourceSet.insert(newWord);
                }
            }
        }
        if(!newSourceSet.size()) return 0;
        
        if(newSourceSet.size() < targetSet.size()) return BBFS(newSourceSet, targetSet, length+1);
        return BBFS(targetSet, newSourceSet, length+1);
    }
public:
    int ladderLength(string beginWord, string endWord, vector<string>& wordList) {
        len = endWord.length();
        for(auto &s : wordList) if(s.length() == len) dictionary.insert(s);
        if(!dictionary.count(endWord)) return 0;
        
        unordered_set<string> beginSet;
        beginSet.insert(beginWord);
        unordered_set<string> endSet;
        endSet.insert(endWord);
        
        return BBFS(beginSet, endSet, 1);
    }
};

January LeetCoding Challenge 10

Description

Create Sorted Array through Instructions

Given an integer array instructions, you are asked to create a sorted array from the elements in instructions. You start with an empty container nums. For each element from left to right in instructions, insert it into nums. The cost of each insertion is the minimum of the following:

  • The number of elements currently in nums that are strictly less than instructions[i].
  • The number of elements currently in nums that are strictly greater than instructions[i].

For example, if inserting element 3 into nums = [1,2,3,5], the cost of insertion is min(2, 1) (elements 1 and 2 are less than 3, element 5 is greater than 3) and nums will become [1,2,3,3,5].

Return the total cost to insert all elements from instructions into nums. Since the answer may be large, return it modulo 109 + 7

Example 1:

Input: instructions = [1,5,6,2]
Output: 1
Explanation: Begin with nums = [].
Insert 1 with cost min(0, 0) = 0, now nums = [1].
Insert 5 with cost min(1, 0) = 0, now nums = [1,5].
Insert 6 with cost min(2, 0) = 0, now nums = [1,5,6].
Insert 2 with cost min(1, 2) = 1, now nums = [1,2,5,6].
The total cost is 0 + 0 + 0 + 1 = 1.

Example 2:

Input: instructions = [1,2,3,6,5,4]
Output: 3
Explanation: Begin with nums = [].
Insert 1 with cost min(0, 0) = 0, now nums = [1].
Insert 2 with cost min(1, 0) = 0, now nums = [1,2].
Insert 3 with cost min(2, 0) = 0, now nums = [1,2,3].
Insert 6 with cost min(3, 0) = 0, now nums = [1,2,3,6].
Insert 5 with cost min(3, 1) = 1, now nums = [1,2,3,5,6].
Insert 4 with cost min(3, 2) = 2, now nums = [1,2,3,4,5,6].
The total cost is 0 + 0 + 0 + 0 + 1 + 2 = 3.

Example 3:

Input: instructions = [1,3,3,3,2,4,2,1,2]
Output: 4
Explanation: Begin with nums = [].
Insert 1 with cost min(0, 0) = 0, now nums = [1].
Insert 3 with cost min(1, 0) = 0, now nums = [1,3].
Insert 3 with cost min(1, 0) = 0, now nums = [1,3,3].
Insert 3 with cost min(1, 0) = 0, now nums = [1,3,3,3].
Insert 2 with cost min(1, 3) = 1, now nums = [1,2,3,3,3].
Insert 4 with cost min(5, 0) = 0, now nums = [1,2,3,3,3,4].
Insert 2 with cost min(1, 4) = 1, now nums = [1,2,2,3,3,3,4].
Insert 1 with cost min(0, 6) = 0, now nums = [1,1,2,2,3,3,3,4].
Insert 2 with cost min(2, 4) = 2, now nums = [1,1,2,2,2,3,3,3,4].
The total cost is 0 + 0 + 0 + 0 + 1 + 0 + 1 + 0 + 2 = 4.

Constraints:

  • 1 <= instructions.length <= 105
  • 1 <= instructions[i] <= 105

Solution

Binary Indexed Tree

class Solution {
    int BIT[100100] = {0};
    const int SZ = 1e5;
    const int MOD = 1e9 + 7;
    int lowbit(int x) { return x&(-x); };
    
    void add(int x) {
        while(x < SZ) {
            BIT[x] += 1;
            x += lowbit(x);
        }
    }
    
    int sum(int x) {
        int sum = 0;
        while(x) {
            sum += BIT[x];
            x -= lowbit(x);
        }
        return sum;
    }
public:
    int createSortedArray(vector<int>& instructions) {
        int answer = 0;
        int len = instructions.size();
        for(int i = 0; i < len; ++i) {
            int less = sum(instructions[i]-1);
            int cnt = sum(instructions[i]);
            add(instructions[i]);
            answer += min(less, i-cnt);
            answer %= MOD;
        }
        return answer;
    }
};