2020-12-13 Daily-Challenge
Today is Sunday, I gonna review the tasks I've done this week, and finish today's leetcode's November LeetCoding Challenge with cpp.
LeetCode Review
Smallest Subtree with all the Deepest Nodes
more elegant solution
class Solution {
pair<TreeNode*, int> helper(TreeNode* root, int level) {
if(!root) return make_pair(root, 0);
auto left = helper(root->left, level+1);
auto right = helper(root->right, level+1);
if(left.second == right.second) return make_pair(root, left.second ? left.second : level);
if(left.second < right.second) return right;
return left;
}
public:
TreeNode* subtreeWithAllDeepest(TreeNode* root) {
return helper(root, 0).first;
}
};
December LeetCoding Challenge 13
Description
Burst Balloons
Given n balloons, indexed from 0 to n-1. Each balloon is painted with a number on it represented by array nums. You are asked to burst all the balloons. If the you burst balloon i you will get nums[left] * nums[i] * nums[right] coins. Here left and right are adjacent indices of i. After the burst, the left and right then becomes adjacent.
Find the maximum coins you can collect by bursting the balloons wisely.
Note:
- You may imagine
nums[-1] = nums[n] = 1. They are not real therefore you can not burst them. - 0 ≤
n≤ 500, 0 ≤nums[i]≤ 100
Example:
Input: [3,1,5,8]
Output: 167
Explanation: nums = [3,1,5,8] --> [3,5,8] --> [3,8] --> [8] --> []
coins = 3*1*5 + 3*5*8 + 1*3*8 + 1*8*1 = 167
Solution
interval DP... why is this at 13th?
class Solution {
public:
int maxCoins(vector<int>& nums) {
int len = nums.size();
if(!len) return 0;
vector<int> newArr{1};
for(auto i : nums) if(i) newArr.push_back(i);
newArr.push_back(1);
len = newArr.size()-2;
vector<vector<int>> dp(len+2, vector<int>(len+2));
for(int k = 0; k < len; ++k) {
for(int i = 1; i+k <= len; ++i) {
int left = i;
int right = i+k;
for(int j = left; j <= right; ++j) {
int coins = dp[j+1][right]+dp[left][j-1]+newArr[j]*newArr[left-1]*newArr[right+1];
dp[left][right] = max(dp[left][right], coins);
}
// cout << "dp[" << left << "][" << right << "]: " << dp[left][right] << endl;
}
}
return dp[1][len];
}
};