2020-11-29 Daily-Challenge
Today is Sunday, I gonna review the tasks I've done this week, and finish today's leetcode's November LeetCoding Challenge with cpp
.
LeetCode Review
Sliding Window Maximum
nothing to say
class Solution {
public:
vector<int> maxSlidingWindow(vector<int>& nums, int k) {
deque<int> monoQueue;
for(int i = 0; i < k; ++i) {
while(monoQueue.size() && monoQueue.back() < nums[i]) monoQueue.pop_back();
monoQueue.push_back(nums[i]);
}
vector<int> answer{monoQueue.front()};
for(int i = k; i < nums.size(); ++i) {
while(monoQueue.size() && monoQueue.back() < nums[i]) monoQueue.pop_back();
if(monoQueue.size() && monoQueue.front() == nums[i-k]) monoQueue.pop_front();
monoQueue.push_back(nums[i]);
answer.push_back(monoQueue.front());
}
return answer;
}
};
November LeetCoding Challenge 29
Description
Jump Game III
Given an array of non-negative integers arr
, you are initially positioned at start
index of the array. When you are at index i
, you can jump to i + arr[i]
or i - arr[i]
, check if you can reach to any index with value 0.
Notice that you can not jump outside of the array at any time.
Example 1:
Input: arr = [4,2,3,0,3,1,2], start = 5
Output: true
Explanation:
All possible ways to reach at index 3 with value 0 are:
index 5 -> index 4 -> index 1 -> index 3
index 5 -> index 6 -> index 4 -> index 1 -> index 3
Example 2:
Input: arr = [4,2,3,0,3,1,2], start = 0
Output: true
Explanation:
One possible way to reach at index 3 with value 0 is:
index 0 -> index 4 -> index 1 -> index 3
Example 3:
Input: arr = [3,0,2,1,2], start = 2
Output: false
Explanation: There is no way to reach at index 1 with value 0.
Constraints:
1 <= arr.length <= 5 * 10^4
0 <= arr[i] < arr.length
0 <= start < arr.length
Solution
DFS, time complexity is $O(n)$
class Solution {
vector<bool> visited;
bool dfs(vector<int> &arr, int current) {
if(visited[current]) return false;
if(arr[current] == 0) return true;
visited[current] = true;
if(current + arr[current] < arr.size() && dfs(arr, current + arr[current])) return true;
if(current - arr[current] >= 0 && dfs(arr, current - arr[current])) return true;
return false;
}
public:
bool canReach(vector<int>& arr, int start) {
visited = vector<bool>(arr.size(), false);
return dfs(arr, start);
}
};
BFS is ok too, with same time complexity and space complexity.
class Solution {
public:
bool canReach(vector<int>& arr, int start) {
vector<bool> visited(arr.size());
queue<int> q;
q.push(start);
int len = arr.size();
while(q.size()) {
int current = q.front();
q.pop();
if(arr[current] == 0) return true;
visited[current] = true;
int farther = current + arr[current];
if(farther < len && !visited[farther]) q.push(farther);
int near = current - arr[current];
if(near >= 0 && !visited[near]) q.push(near);
}
return false;
}
};