2020-10-20 Daily-Challenge

Today I have done Ugly Number II on leetcode and leetcode's October LeetCoding Challenge with cpp.

Ugly Number II

Description

Write a program to find the n-th ugly number.

Ugly numbers are positive numbers whose prime factors only include 2, 3, 5.

Example:

Input: n = 10
Output: 12
Explanation: 1, 2, 3, 4, 5, 6, 8, 9, 10, 12 is the sequence of the first 10 ugly numbers.

Note:

  1. 1 is typically treated as an ugly number.
  2. n does not exceed 1690.

Solution

ugly number with ugly solutions ;)

class Solution {
 public:
  int nthUglyNumber(int n) {
    set<long long> s;
    s.insert(1);
    auto it = s.begin();
    while(--n) {
      s.insert(it, *it*2);
      s.insert(it, *it*3);
      s.insert(it, *it*5);
      ++it;
    }
    return *it;
  }
};

October LeetCoding Challenge 20

Description

Clone Graph

Given a reference of a node in a connected undirected graph.

Return a deep copy (clone) of the graph.

Each node in the graph contains a val (int) and a list (List[Node]) of its neighbors.

class Node {
    public int val;
    public List<Node> neighbors;
}

Test case format:

For simplicity sake, each node's value is the same as the node's index (1-indexed). For example, the first node with val = 1, the second node with val = 2, and so on. The graph is represented in the test case using an adjacency list.

Adjacency list is a collection of unordered lists used to represent a finite graph. Each list describes the set of neighbors of a node in the graph.

The given node will always be the first node with val = 1. You must return the copy of the given node as a reference to the cloned graph.

Example 1:

img

Input: adjList = [[2,4],[1,3],[2,4],[1,3]]
Output: [[2,4],[1,3],[2,4],[1,3]]
Explanation: There are 4 nodes in the graph.
1st node (val = 1)'s neighbors are 2nd node (val = 2) and 4th node (val = 4).
2nd node (val = 2)'s neighbors are 1st node (val = 1) and 3rd node (val = 3).
3rd node (val = 3)'s neighbors are 2nd node (val = 2) and 4th node (val = 4).
4th node (val = 4)'s neighbors are 1st node (val = 1) and 3rd node (val = 3).

Example 2:

img

Input: adjList = [[]]
Output: [[]]
Explanation: Note that the input contains one empty list. The graph consists of only one node with val = 1 and it does not have any neighbors.

Example 3:

Input: adjList = []
Output: []
Explanation: This an empty graph, it does not have any nodes.

Example 4:

img

Input: adjList = [[2],[1]]
Output: [[2],[1]]

Constraints:

  • 1 <= Node.val <= 100
  • Node.val is unique for each node.
  • Number of Nodes will not exceed 100.
  • There is no repeated edges and no self-loops in the graph.
  • The Graph is connected and all nodes can be visited starting from the given node.

Solution

I'm trying not to memorize where node is, but failed :D

/*
// Definition for a Node.
class Node {
public:
    int val;
    vector<Node*> neighbors;
    
    Node() {
        val = 0;
        neighbors = vector<Node*>();
    }
    
    Node(int _val) {
        val = _val;
        neighbors = vector<Node*>();
    }
    
    Node(int _val, vector<Node*> _neighbors) {
        val = _val;
        neighbors = _neighbors;
    }
};
*/

class Solution {
    vector<Node*> nodes = vector<Node*>(101, nullptr);
public:
    Node* cloneGraph(Node* node) {
        if(!node) return nullptr;
        if(nodes[node->val]) return nodes[node->val];
        Node* root = new Node(node->val);
        nodes[node->val] = root;
        for(auto neighbor: node->neighbors) {
            root->neighbors.push_back(cloneGraph(neighbor));
        }
        return root;
    }
};